Error Analysis of a Monte Carlo Algorithm for Computing Bilinear Forms of Matrix Powers
نویسندگان
چکیده
In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.
منابع مشابه
Comparison of the Computational Cost of a Monte Carlo and Deterministic Algorithm for Computing Bilinear Forms of Matrix Powers
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of...
متن کاملMonte Carlo Numerical Treatment of Large Linear Algebra Problems
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm...
متن کاملSafety Analysis of the Patch Load Resistance of Plate Girders: Influence of Model Error and Variability
This study aims to undertake a statistical study to evaluate the accuracy of nine models that have been previously proposed for estimating the ultimate resistance of plate girders subjected to patch loading. For each model, mean errors and standard errors, as well as the probability of underestimating or overestimating patch load resistance, are estimated and the resultant values are compared o...
متن کاملLinearly constrained Bayesian matrix factorization for blind source separation
We present a general Bayesian approach to probabilistic matrix factorization subject to linear constraints. The approach is based on a Gaussian observation model and Gaussian priors with bilinear equality and inequality constraints. We present an efficient Markov chain Monte Carlo inference procedure based on Gibbs sampling. Special cases of the proposed model are Bayesian formulations of nonne...
متن کاملQuasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in R (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random field, i.e., a(x, ω) = exp(Z(x, ω)) where x is the spatial variable and Z(x, ·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006